
Computational Science and Scientific Computing
Workshop

Elliot S. Menkah, Ph.D
Daniella N. Apeadu

National Institute for Mathematical Sciences, Ghana.
Kwame Nkrumah University of Science and Technology, Ghana.

October 6, 2025 - October 10, 2025

1 / 64

Linux Command Line

Reading List and Reference Materials?

1 The Linux Command Line - A Complete Introduction by William
Shotts

2 Linux Command Line and Shell Scripting Bible - Richard Blum

2 / 64

Linux Command Line

What’s Scientific Computing and Why Linux?

Using computers to analyze and solve problems

- Eg. Automating daunting and repetitive task such as huge-size matrix
vector operations.

It allows the study of mathematical models of physical phenomena.

It is used to find optimal system parameters.

Experimentalists use computers to control experiments and to gather
relevant data.

3 / 64

Linux Command Line

What’s Scientific Computing and Why Linux?

Using computers to analyze and solve problems

- Eg. Automating daunting and repetitive task such as huge-size matrix
vector operations.

It allows the study of mathematical models of physical phenomena.

It is used to find optimal system parameters.

Experimentalists use computers to control experiments and to gather
relevant data.

3 / 64

Linux Command Line

What’s Scientific Computing and Why Linux?

Using computers to analyze and solve problems

- Eg. Automating daunting and repetitive task such as huge-size matrix
vector operations.

It allows the study of mathematical models of physical phenomena.

It is used to find optimal system parameters.

Experimentalists use computers to control experiments and to gather
relevant data.

3 / 64

Linux Command Line

What’s Scientific Computing and Why Linux?

Using computers to analyze and solve problems

- Eg. Automating daunting and repetitive task such as huge-size matrix
vector operations.

It allows the study of mathematical models of physical phenomena.

It is used to find optimal system parameters.

Experimentalists use computers to control experiments and to gather
relevant data.

3 / 64

Linux Command Line - Outline

File system

- Linux File system

Basic Operations

- Basic Commands
- File operations
- User Environment
- Access Control
- Process Management
- Network Management

Text Editor

- Vim

Shell Tools & Programs

- Shell Program

Shell Programming

- Bash Scripting
- Variables
- Statements
- Conditionals
- Control Sequence / Loops
- Functions

Regular Expressions

- Regular Expression

4 / 64

Linux Command Line - File system

Filesystem Types: ext2, ext3, ext4, reiserfs, vfat, xfs, nfs

Devices: Block devices, Loop devices

Block Devices:

inodes

FHS: Filesystem Hierarchy Standard

NFS: Network File System

5 / 64

Linux Command Line - Linux Directory Structure

6 / 64

Linux Command Line - Basic Operations

Basic Operations

- Basic Commands
- File operations
- User Environment
- Access Control
- Process Management
- Network Management

7 / 64

Linux Command Line - Basic Commands

ls: list files

pwd: present working directory

cd: change directory

cat: list file content

alias: remap a command

date: check or set date/time

uname: OS info. version and architecture

8 / 64

Linux Command Line - Basic Commands

- pwd: present working directory

- ls: list files/directories

- cd: change directory

ls: list files

1 ~ $ ls

2

pwd: present working directory

1 ~ $ pwd

2

cd: change directory
cd directory-name

1 ~ $ cd Desktop

2

Navigate one step(directory) back cd ..

1 ~ $ cd ..

2

ls

1 Desktop Pictures

2 Documents Downloads

3

pwd

1 /home/elliott

2

pwd

1 /home/elliott/Desktop

2

pwd

1 /home/elliott

2

More info on commands: https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners/

9 / 64

Linux Command Line - Basic Commands

touch: create new files

mkdir: create new directory

cp: cp files & directories

mv: relocate/move file & directories

rm: delete files & directories

10 / 64

Linux Command Line - Basic Commands ...

- touch: create a new file

- mkdir: create a new directory

- cp: copy files & directories

Create a new file using touch ’filename’
Eg.

1 ~ $ touch file1

2 ~ $ touch file2

3

Create a new directory using mkdir ’directoryname’
Eg. To create two directories called dir1 and dir2

1 ~ $ mkdir dir1

2 ~ $ mkdir dir2 dir4 dir5

3

11 / 64

Linux Command Line - Basic Commands ...

Copy a file from a particular location to another using
cp ’file-to-be-copied’ ’new-destination’
Eg. Copy file1 to directory called dir1

1 ~ $ cp file1 dir1

2

Copy a directory from a particular location to another. Copying is done recursively, [-r]
cp -r ’directory-to-be-copied’ ’new-destination’
Eg. Copy file1 to directory called dir1

1 ~ $ cp -r dir4 dir5

2

More info on commands: https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners/

12 / 64

Linux Command Line - Basic Commands ...
- mv: move/relocate/rename or a file/directory

Move/Relocate a file/directory to a new location using
mv ’file-to-be-moved’ ’new-destination’
Eg. To place file2 into dir2

1 ~ $ mv file2 dir2

2

’file-to-be-moved’ and ’new-destination’ are actually paths.
Linux allows relative paths
Technically, the syntax below shows how it absolute paths works with mv

1 ~ $ mv /home/elliott/file2 /home/elliott/dir2

2

Rename a file using mv ’file-to-be-renamed’ ’new-name’
Eg. To rename file1 into file3

1 ~ $ mv file1 file3

2

Rename a directory using mv ’directory-to-be-renamed’ ’new-name’
Eg. To rename dir1 into dir3

1 ~ $ mv dir1 dir3

2

13 / 64

Linux Command Line - Process Management

ps:: list processes

kill: kill processes

top: monitor processes

fuser: find process owner

14 / 64

Linux Command Line - User Environment

env: command to view user environment

export: command to add to user environment

bashrc: file to store user environment settings

profile: file for global user environment settings. /etc/profile

tilde: reference to current user

15 / 64

Linux Command Line - Basic Commands ...

End of Basic Commands, thank you ...

16 / 64

Linux Command Line basic tools & File Operations

CLI tools and File operations

17 / 64

Linux Command Line - File Operations

echo: display lines of text or string

grep: match string pattern in text

paste: join content of files(horizontally)

cut: cut out sections of a line of text

file: file information

find: find files matching

xargs: parse as argument

tar: de(archive) and (un)compress files

18 / 64

Linux - Shell Tools: echo

echo

ECHO is a command-line tool used for displaying lines of text or string
which are passed as arguments on the command line.

Mostly Used to output status text to the screen or a file

19 / 64

Linux - Echo Practice

Structure

echo [options] string

Eg. : Dump ’Hello Bash’ to screen

Example

$ echo ’Hello World’

Outcome

’Hello World’

20 / 64

Linux - Echo Practice

Options

1 Options

- e : Allows you to change format of text
- n : Removes preceding newline

2 Escape

\a : For audible alert
\b : backspaces character just before the slash
\c : truncates everything after the slash.
\n : Adds a new-line character
\t : adds a tab character to the output

21 / 64

Linux - Echo Practice

1 un@mn:~$ echo -e "Hello

World!"

2

1 un@mn:~$ echo -n "Hello

World!"

2

3

1 un@mn:~$ echo -e "It is\b

red"

2

1 un@mn:~$ echo -e "It is red\

n"

2

1 Hello World!

2

1 Hello World!un@mn:~$

2

3

1 It i red

2

1 It is red

2

22 / 64

Linux - Shell Tools: Echo Practice, Redirect to file

> : Output Redirect to new file >> : Output Redirect and append to file

Redirect the output of an echo command
echo [options] ’string’ > nameOfFile
Eg.

1 ~ $ echo "Logfile for Today 27/10/2022" > log.txt

2

1 ~ $ ls

2

log.txt should be found with other files that may be present in pwd.

1 ~ $ log.txt

2

23 / 64

Linux - Shell Tools: Echo Practice, Redirect to file

To add some more data to log.txt
echo [options] ’string’ >> log.txt

1 echo -e "#By Captain Jack Sparrow\n" >> log.txt

2

To verify the content of file log.txt
cat ’file-name’

1 ~ $ cat log.txt

2

File should contain:

1 #Logfile for Today 27/10/2022

2 #By Captain Jack Sparrow

3

24 / 64

Linux - Shell Tools: grep

grep

GREP is a command-line utility for searching plain-text data sets for lines
matching a regular expression.

Line matching and extraction

Supports Regular Expressions

Support inverse matching (-v)

Supports piping

25 / 64

Linux - Grep Practice

Structure

grep [options] pattern-being-sort [files]

Eg. : Find lines containing text ’Williams’ in the file addresses.txt

Example

$ grep Williams addresses.txt

Outcome

Steve Williams
Elizabeth Williams
John Williams
John Williamson

26 / 64

Linux - Grep Practice

Structure

grep [options] pattern-being-sort [files]

Options

- w : match exact words

- n : provide lines of occurrence

- i : case-insensitive pattern

- r : recursive search and match

- c : count

- A : Lines After context

- B : Lines Before context

- C : Lines Before & After context

27 / 64

Linux - Shell Tools: CUT

cut

CUT is a command-line utility for cutting out sections of string of text.

Cuts out certain section of line from files

cut out byte positions, characters or fields.

Structure

cut [options]... [FILES] ...

- b : Extract by bytes

- c : Extract by Character

- f : Extract by fields

28 / 64

Linux - Shell Tools: CUT Example -b

williamsfam.txt

Steve Williams
Elizabeth Williams
John Williams
John Williamson

Example

$ cut -b 1,2,3 williamsfam.txt

Outcome

Ste
Eli
Joh
Joh

29 / 64

Linux - Shell Tools: CUT Example -c

williamsfam.txt

Steve Williams
Elizabeth Williams
John Williams
John Williamson

Example

$ cut -c 2,4 williamsfam.txt

Outcome

tv
lz
on
on

NB: -b and -c can give the same results when dealing with characters.

30 / 64

Linux - Shell Tools: CUT Example -f

cut [options]... [FILES] ...

-f option

-f option uses a tab space as the default delimiter.
The delimiter is denoted by -d and can be changed

Example

$ cut -d ” ” -f 1 williamsfam.txt

Outcome

Steve
Elizabeth
John
John

31 / 64

Linux - Shell Tools: paste

paste

PASTE is a command-line utility joining files horizontally (parallel
merging) by outputting lines consisting of lines from each file specified.

Merges files using tab as delimiter

Structure

paste [options]... [FILES] ...

- -d : Delimiter - -s : sequential merging

32 / 64

Linux - Shell Tools: PASTE Example
Checking content of firstnames.txt

1 ~ $ cat firstnames.txt

2

3

Checking content of lastnames.txt

1 ~ $ cat lastnames.txt

2

3

1 Jack

2 Alice

3 Fred

4 Kwame

5

1 Ford

2 Reynolds

3 Russo

4 Mensah

5

Example

$ paste firstnames.txt lastnames.txt > fullnames.txt

Outcome into file fullnames.txt

Jack Ford
Alice Reynolds
Fred Russo
Kwame Mensah

33 / 64

Linux Command Line - Practical tools

Finding files

$ find . -type f — xargs grep elliot

34 / 64

Linux Command Line - File Operations ...

End of File Operations, thank you ...

35 / 64

Linux Command Line - Advanced Shell tools

Advanced Shell tools: AWK, SED, etc ..

36 / 64

Linux - Shell Tools: AWK

awk

AWK is a command-line utility that is designed for text processing and
typically used as a data extraction and reporting tool.

- it is a tool for manipulating data and generating reports

- it is a filter and cn scan files line by line

- Splits each input line into fields

- Compares input line/fields to pattern and perform action on matches

Syntax & Structure

awk [options] ’selection criteria action’ input-file > output

37 / 64

Linux - Shell Tools: Awk Practice
1 With Ref

> : Output Redirect to new file >> : Output Redirect and append to file

Extracting the first columns of the data file the

1 ~ $ awk ’{ print $1}’ data_output.dat > log0.txt

2

Outcome of awk command

#
#
#Step
0.000000
1.000000
2.000000
3.000000
4.000000
...

You can redirect the output of one command as the input of awk

1 ~ $ cat data_output.dat | awk ’{ print $1}’ > log1.txt

2

Both files, log0.txt and log1.txt should contain the same output. 38 / 64

Linux - Shell Tools: Awk Practice
Awk assumes a space as the field separator or delimeter.
The field separator or delimeter can be changed by using the flag -F
awk -F ’selection criteria {action}’ input-file > output
Eg. To get the users or username in a given linux system, we can extract it form
/etc/passwd using ”:”

1 ~ $ cat /etc/passwd | awk -F ":" ’{ print $1}’ > users.txt

2

Outcome of awk command

systlog
apt
tss
uuidd
tcpdump
...

You can also decide to print multiple columns

1 ~ $ cat /etc/passwd | awk -F ":" ’{ print $1 " " $3}’ >

users.txt

2
39 / 64

Linux - Shell Tools: Awk Practice

Field separators for both delimeter field and Output Field can be
predefined
awk ’BEGIN{FS=”:”; OFS=”-”} selection criteria {action}’ input-file >
output
Eg. To separate the output by tab spaces:
/etc/passwd using ”:”

1 ~ $ cat /etc/passwd | awk ’BEGIN{FS =":"; OFS ="\t"} { print

$1 , $3}’ > users.txt

2

Outcome of awk command

systlog 104
apt 105
tss 106
uuidd 107
tcpdump 108
...
...

40 / 64

Linux - Shell Tools: Awk Practice

AWK can accept regular expressions to aid filtering
awk ’BEGINFS=”:”; OFS=”-” selection criteria {action}’ input-file >
output
Eg. To get names starting with ”ic” from /etc/passwd :

1 ~ $ cat /etc/passwd | awk ’BEGIN{FS =":"; OFS ="\t"} /^ic/ {

print $1 , $3}’ > users.txt

2

Outcome of awk command

ictptutor 1000
ictpuser 1001

41 / 64

Linux - Shell Tools: Awk Practice

AWK can take let you do some arithmetic
awk ’BEGINFS=”:”; OFS=”-” selection criteria {action}’ input-file ¿
output
Eg. To divide all values of column 1 by 2.0 :

1 ~ $ awk ’{ print $1/2.0 }’ data_output.dat

2

Outcome of awk command

2
2
2
2
...
...

42 / 64

Linux - Shell Tools: Awk Practice

AWK can accept logicals and conditional statements
awk ’BEGINFS=”:”; OFS=”-” selection criteria {action}’ input-file >
output
Eg. To extract running processes with bash names starting with ”ic” from
/etc/passwd :

1 ~ $ ps -ef | awk ’{ if($NF == "bash") print $0 }’

2

Outcome of awk command

ictpuser 9331 9323 0 Oct25 pts/0 00:00:01 bash

43 / 64

Linux - Shell Tools: SED

SED

SED (Stream Editor) is a compact programming language for parsing and
transforming text.

Line Stream matching and extraction

input is file

Supports regular expressions

Supports piping

Syntax & Structure

sed [options] [SCRIPT] input-file > output

44 / 64

Linux - Shell Tools: SED Practice

Eg. To replace the string ’Kinetic’ in data output.dat to ’Total’

1 ~ $ sed s/Kinetic/Total/ data_output.dat

2

Outcome of awk command

This file was created Tue Oct 11 15:42:37 2022
Created by:
#Step ”#Potential” ”#Total”
0.000000 1635.648926 331729.281250
1.000000 -10321.562500 347803.593750
2.000000 -18997.654297 370155.781250
3.000000 -24159.796875 398618.187500
.

45 / 64

Linux - Advance Shell Tools & Programs

End of Advanced Shell Tools & Programs

46 / 64

Linux - Introduction to Text editing and Shell Scripting

Text Editing and Shell Scripting

Introduction to Shell Scripting
1 Editing with Linux text editors

1 Nano
2 Vi or Vim
3 Emacs

2 Bash Shell Scripting

47 / 64

Linux - Introduction to Text editing and Shell Scripting

Nano Syntax & Structure

To starting text editing with Nano:

1 ~ $ nano <file -name >

2

After adding text content to the file

Editing operations of Nano

ctrl + O - Write to file(save changes made)
ctrl + X - Close the opened file
ctrl + G - Get help with Nano
ctrl + W - Search or find a string in text
. . .
. . .

48 / 64

Linux - Introduction to Text editing and Shell Scripting

Vim Syntax & Structure

To starting text editing with Vi or Vim:

1 ~ $ vim <file -name >

2

Def: Escape mode

Modes of Vi/Vim

- Escape mode - esc key
- INSERT mode - i key
- VISUAL Block mode - ctrl + v

49 / 64

Linux - Introduction to Text editing and Shell Scripting

Vim Syntax & Structure

To starting text editing with Vi or Vim:

1 ~ $ vim <file -name >

2

After adding text content to the file, get into ESC mode

Editing operations of Vim

w - Write to file(save changes made)
q - quit vim of close the opened file

50 / 64

Linux - Introduction to Text editing and Shell Scripting

Shell Scripting

Introduction to Shell Scripting

1 Shell Scripting

51 / 64

Linux - Introduction to Text editing and Shell Scripting

Computer Structure

Ref to image: Kernel & Shell.

Shells :

- Borne Shell
- Borne-Again Shell(Bash)
- korn shell
- C shell
. . .
. . .

52 / 64

https://jaguhiremath62.medium.com/difference-between-kernel-and-shell-718b3de15be6

Linux - Introduction to Text editing and Shell Scripting

Shell scripts & The Computer Structure.

Why shell scripts look like.

Computer Structure.

Ref to image: Kernel & Shell.

53 / 64

https://mindmajix.com/shell-scripting-tutorial

Linux - Introduction to Text editing and Shell Scripting

Why is shell scripting even necessary ?

Importance:

- Writing a series of commands
- Combine lengthy and repetitive
commands

- Execute Routine task
. . .
. . .

54 / 64

Linux - Introduction to Text editing and Shell Scripting

How to create a shell script

Steps:

1 Create a file(with your preferred text
editor) and name it with a .sh
extension.

2 Start the content of the script with
#!(shebang) /path/to/shell/.

3 Add some code/text/content to the
file/script and save.

4 Modify file permissions of script to
make it executable .

55 / 64

Linux Command Line - Shell Scripting & Access Control

chown:: Change ownership of files

chmod: Change permission on files

setuid: Share ownership on files

sticky bit: Share write access on a directory

56 / 64

Linux - Introduction to Text editing and Shell Scripting

Making file executable

To change the permission to make file executable by user:

1 ~ $ chmod u+a <script -name.sh >

2

Running executable script

To run or execute script:

1 ~ $./<script -name.sh>

2

or

1 ~ $ bash <script -name.sh>

2
57 / 64

Linux Command Line - Shell Scripting & Access Control

- Comments

- Variables

- Statements

- Conditionals

- Controls sequence/ Loops

- Functions

58 / 64

Linux - Introduction to Text editing and Shell Scripting

Comments in Scripting

Comments in shell scripting are denoted with a preceding # symbol.

;
59 / 64

Linux - Introduction to Text editing and Shell Scripting

Shell Variables

Shell Variables store data.

; 60 / 64

Linux - Introduction to Text editing and Shell Scripting

Conditionals

Conditionals are tools for decision making.

; 61 / 64

Linux - Introduction to Text editing and Shell Scripting

Control Sequence/ Loops

Control Sequence or loops are used to iteratively parse instructions to be
executed.

;
62 / 64

Linux - Introduction to Text editing and Shell Scripting

Functions

A functions is a way or technique for grouping reusable bits of code under
one name for later use.

;

63 / 64

Linux - Introduction to Plotting with GNUPLOT

Plotting with GNUPLOT

Introduction to Plotting with GNUPLOT

64 / 64

