
Computational Science and Scientific Computing
Workshop

Data Programming - Python as a scientific computing tool

Elliot S. Menkah, Ph.D
Daniella N. Apeadu

National Institute for Mathematical Sciences
Kwame Nkrumah University of Science and Technology

October 13, 2025 - October 15, 2025

Python

Why Python?

▶ It is interpreted and NOT compiled

- E.g. of Compile languages are C/C++, FORTRAN, etc.

▶ It’s a dynamically-typed language.

▶ It can be used interactively.

▶ Syntax is simple, elegant and easily readable.

▶ Free and open source.

▶ It’s powerful due to its ecosystem of libraries.

Python

Why Python?

▶ It is interpreted and NOT compiled

- E.g. of Compile languages are C/C++, FORTRAN, etc.

▶ It’s a dynamically-typed language.

▶ It can be used interactively.

▶ Syntax is simple, elegant and easily readable.

▶ Free and open source.

▶ It’s powerful due to its ecosystem of libraries.

Python

Why Python?

▶ It is interpreted and NOT compiled

- E.g. of Compile languages are C/C++, FORTRAN, etc.

▶ It’s a dynamically-typed language.

▶ It can be used interactively.

▶ Syntax is simple, elegant and easily readable.

▶ Free and open source.

▶ It’s powerful due to its ecosystem of libraries.

Python is versatile.

▶ Download information from a web page.

▶ Manipulate tests to extract and create information.

▶ Animate a world in 3D.

▶ Process huge data sets.

▶ Make publication-quality graphics.

Which version of Python should I use?

▶ Currently two(2) versions: 2.7 and 3.7
▶ Some packages still work only with 2.7

▶ Versions: 2.7 is deprecated

▶ Recommend you use version 3.7

Which version of Python should I use?

▶ Currently two(2) versions: 2.7 and 3.7
▶ Some packages still work only with 2.7

▶ Versions: 2.7 is deprecated

▶ Recommend you use version 3.7

Which version of Python should I use?

▶ Currently two(2) versions: 2.7 and 3.7
▶ Some packages still work only with 2.7

▶ Versions: 2.7 is deprecated

▶ Recommend you use version 3.7

Which version of Python should I use?

▶ Currently two(2) versions: 2.7 and 3.7
▶ Some packages still work only with 2.7

▶ Versions: 2.7 is deprecated

▶ Recommend you use version 3.7

ipython Notebook

Why ipython Notebook?

- Gives us a computational notebook with lots of inclusions

▶ Source code in python and other languages

▶ Rich text

▶ Equations written in Latex

▶ Ready output of results

▶ Graphics

▶ Multimedia

ipython Notebook

Why ipython Notebook?

- Gives us a computational notebook with lots of inclusions

▶ Source code in python and other languages

▶ Rich text

▶ Equations written in Latex

▶ Ready output of results

▶ Graphics

▶ Multimedia

ipython Notebook

Why ipython Notebook?

- Gives us a computational notebook with lots of inclusions

▶ Source code in python and other languages

▶ Rich text

▶ Equations written in Latex

▶ Ready output of results

▶ Graphics

▶ Multimedia

ipython Notebook

Why ipython Notebook?

- Gives us a computational notebook with lots of inclusions

▶ Source code in python and other languages

▶ Rich text

▶ Equations written in Latex

▶ Ready output of results

▶ Graphics

▶ Multimedia

ipython Notebook

Why ipython Notebook?

- Gives us a computational notebook with lots of inclusions

▶ Source code in python and other languages

▶ Rich text

▶ Equations written in Latex

▶ Ready output of results

▶ Graphics

▶ Multimedia

ipython Notebook

Why ipython Notebook?

- Gives us a computational notebook with lots of inclusions

▶ Source code in python and other languages

▶ Rich text

▶ Equations written in Latex

▶ Ready output of results

▶ Graphics

▶ Multimedia

ipython Notebook

Why ipython Notebook?

- Gives us a computational notebook with lots of inclusions

▶ Source code in python and other languages

▶ Rich text

▶ Equations written in Latex

▶ Ready output of results

▶ Graphics

▶ Multimedia

Installing Python.

▶ Alternate: package manager ’-apt-get’ on Linux or ’brew’ on
Mac to install python

▶ Anaconda

How do I run python?

#!/bin/(bash or zsh)
$ python
Python 3.6.7 — packaged by conda-forge — (default, Nov 6 2019, 16:03:31)
Type ”help”, ”copyright”, ”credits” or ”license” for more information.
>>>

This is mainly good for running scripts.

#!/bin/bash/zsh
$ ipython
Python 3.6.7 — packaged by conda-forge — (default, Nov 6 2019, 16:03:31)
Type ’copyright’, ’credits’ or ’license’ for more information.
IPython 7.10.2 – An enhanced Interactive Python. Type ’?’ for help.

In 1

Anaconda - Conda virtual environment
- exclusive environment

- reinstall anaconda

- package dependencies resolution

Download anaconda via the link: https://www.anaconda.com/distribution/ and
download the installer for your respective OS [Linux , mac , windows]

Create an environment:

1 conda create <envname >

2 Eg.

3 conda create scim561

4

Connect to environment

1 conda activate scim561

2

Installing packages into an environment

1 conda install <package >

2 Eg.

3 conda install matplotlib

4

Deactivate/disconnect from present working environment:

1 conda deactivate

2

Python Basics

print function, variables, operators

Interpreter - strings and print() function

Print functions and strings:

1 >>> print("Hello World")

2 Hello World

3

Use double outer quotes (” ”) over single outer quotes (’ ’)

1 >>> print(’We\’re here’)

2 We’re here

3

to avoid complications.

1 >>> print("We’re here")

2 We’re here

3

Interpreter - Variable assignment and Data types

Variables take on the data type of the values being assigned to them.

1 >>> var0 = "hello"

2 >>> var1 = 7

3 >>> var2 = 5.2

4 >>> var3 = True

5

String Variable:

1 >>> print(var0)

2 hello

3 >>> type(var0)

4 <type ’str’>

5

Integer Variable:

1 >>> print(var1)

2 7

3 >>> type(var1)

4 <type ’int’>

5

6

Interpreter - Variable assignment and Data types

Variables take on the data type of the values being assigned to them.

Floating point Variable:

1 >>> print(var2)

2 5.2

3 >>> type(var2)

4 <type ’float ’>

5

Boolean Variable:

1 >>> print(var3)

2 True

3 >>> type(var3)

4 <type ’bool’>

5

Python Operators

Special symbols that carry out arithmetic or logical computation.

Arithmetic Operators

1 + addition

2 - substraction

3 * multiplication

4 / division

5 \% Modulos

6 // Floor division

7 ** Exponential

8

Logical Operators

1 = assignment operator

2 == Equal to

3 < less than

4 > greater

5 <= less than or equiv.

6 >= greater or equiv.

7 and

8 or

9 not

10

Exercises 1

Given an initial velocity, u, as 10.2 ms−1, an acceleration, a, of
10.01 ms2 and a time, t, of 4 seconds, using the python
programming language, write a code to compute the final velocity
of a moving particle with the following formulation
v = u + at.

data storage, loops, len and range, if statements

Interpreter - List, Tuples and Dictionaries

1 >>> x = ["Hey", "you", 5, 8.7]

2 >>> y = ("hello", "hi", "you")

3 >>> w = {"foo": 1.0, "bar": 2.0 }

4 >>> print(type(x))

5 >>> <class ’list’>

6 >>> print(type(y))

7 >>> <class ’tuple’>

8 >>> print(type(w))

9 >>> <class ’dict’>

10

Empty list:

1 >>> x = []

2 >>> x

3 []

4

Interpreter - List, Tuples and Dictionaries

Indexing and memory location:
Memory locations for storing data in list and tuples are indexed so that one
could access data stored in a specific memory locations.

NB: By default, index locations begin from zero (0).

1 >>> z = [2, 3, 4, 5]

2 >>> num0 = z[0]

3 >>> print(num0)

4 2

5

Interpreter - List, Tuples and Loops

Loops, List and range:

1 >>> for i in z:

2 ... print(i)

3 ...

4

1 2

2 3

3 4

4 5

5

range & len intrinsic functions

1 >>> range (4)

2 range (0,4)

3 >>> len(z)

4 4

5

0 = Starting index
4 = Total no. of numbers
4 = Number of elements in list z.

Interpreter - List, Tuples and Loops

range and len can be combined and used in loops:

1 >>> for i in range(len(z)):

2 ... print(i)

3 ...

4

5

1 0

2 1

3 2

4 3

5

len gives length of list z, that is, 4.
range gives 4 integers used as indexes starting from index 0.

Interpreter - While loops and Boolean

while loops, if statements and boolean

1 >>> a = True:

2 >>> print(a)

3 True

4 >>> res = 0

5 >>> while (a):

6 ... res += 1

7 ... print(res)

8 ... if (res >= 10):

9 ... a = False

10

11

1 1

2 2

3 3

4 4

5 ...

6

boolean a changes to False and it is used to terminate loop in the
condition test section

modules

Modules - import, help, dir

There are lots of libraries in Python that can be imported to use rather than
having to build your own. This makes life much easier.
E.g. math

1 >>> import math

2

Docs of modules can be viewed with the help and dir methods.

1 >>> help(< module >)

2 >>> help(math)

3 ...

4 ...

5 ...

6 >>> dir(math) or >>> print(dir(math))

7

help gives a comprehensive documentation of the module.
dir gives you the symbols contained in the method concerned.

Modules - import, help, dir

1 >>> help(math.log)

2 ...

3 ...

4 ...

import math place the math class in current environment.

1 >>> math.log (10)

2 2.3025

3 >>> math.cos(2 * math.pi)

4 1.0

5

Modules - More on import
Partial or selective importation of modules.

In the event of wanting to import only a few symbols into your namespace, the
from statement is made use of.

1 >>> from math import < symbol or method >

2 >>> from math import cos

3 >>> cos (90)

4 -0.4480736161291701

5

Multiple methods can be imported

1 >>> from math import cos , pi

2 >>> cos(2 * pi)

3 1.0

4

Plotting - Matplotlib

Matplotlib

1 import matplotlib.pyplot as plt

2

3 plt.plot(X_data , Y_data)

4 plt.title("Title of plot")

5 plt.xlabel("X Axis Lable")

6 plt.ylabel("Y axis Label")

7

8 plt.savefig("NameOfFile.png")

9

10

Listing: Plottin with Matplotlib

functions

Functions

Functions in Python are defined by the keyword def

1 >>> def func(x):

2 ... res = x + 1

3 ... return res

4 ...

5 >>> d = func (4)

6 >>> d

7 5

8

9

Python scripts

Script

1 #! /usr/bin/python

2

3 print("Hello World")

4

Terminal

1 python3 hello.py

Exercises 2

Convert your code from Exercise 1 into a function (that returns a
value), where the initial condition, u, and the time, t, are
arguments.

Exercises 3 - Algorithm Development

Exercise A: Multiples of 3 & 5

If we list all the natural numbers below 10 that are multiples of 3
or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
Implement an algorithm, with Python, to find the sum of all the
multiples of 3 or 5 below 1000.

Exercise B: Fibonacci sequence

Each new term of the Fibonacci sequence is generated by adding
the previous two terms. By starting with 1 and 2, the first 10
terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms of the Fibonacci sequence whose values
do not exceed four million, find the sum of the even-valued terms.

arrays and multidimensional vectors

Handling Arrays & Multidimensional Vectors

Vector Operation

a⃗ · b⃗ =
N∑
i=0

aibi

=
(
20 − 3 5

) 15
−2.249

1


= 20(15)− 3(−2.249) + 5(1)

= 300 + 6.747 + 5

= 311.747

Handling Arrays & Multidimensional Vectors

Multidimensional Arrays

20 15 10 45
−3 −2.249 7 1.751
5 1 3 9

 =

20
−3
5

 15
−2.249

1

10
7
3

 45
1.751
9



file I/O, exceptions and assertions

File I/O

keyword: open

1 >>> fh = open("demofile.txt", "a")

2 >>> fh.write("My data file \n")

3 >>> fh.write("Results: %d", res)

4 >>> fh.close

5

Exceptions and Assertions

This is a way to handle expected and unexpected errors.

1. Exceptions Handling

2. Assertion

1 try:

2 # Runs First

3 < code >

4 except:

5 # Runs if exceptions occurs in try block

6 < code >

7 else:

8 # Executes if try block succeeds.

9 < code >

10 finally:

11 # This code always runs executes.

12 < code >

13

Exceptions and Assertions

Exception Example

1 def read_file(path):

2 """ Return the content of a file at path """

3 try:

4 fh = open(path , mode="rb")

5 data = f.read()

6 return data

7 except FileNotFoundError as err:

8 raise

9 else:

10 fh.close

11 finally:

12 print("Leaving file read routine")

13

Python Basics - End

End of Basics.
Questions ?
Review

Numerical and Scientific Python

Numerical and Scientific Python
Numpy and Scipy libraries

Numerical Python - NumPy

Arrays could be made from:

1. Python list or tuples

2. Using functions that are dedicated to generating numpy
arrays, such as arange, linspace, etc.

3. Reading data from files

1 from numpy import as np

2 v = array ([1,2,3,4])

3 -----

4 [1,2,3,4]

5

1 M = np.array ([[1, 2], [3, 4]])

2 -----

3 array ([[1, 2],

4 [3, 4]])

5

Exercises 4

Using the python programming language, write a code that
implements the solution or finds the roots of the non-linear
equation:
3x2 + 2x + 1 = 0
using the

1. Bisection Method

2. Newton-Raphson’s Method

3. Secant Method

as separate functions.

Classes

Classes in Python are defined by the keyword class

1 >>> class myfunctions:

2 ...

3 ... def add(x):

4 ... res = x + 2

5 ... return res

6 >>>

7 >>> yy = myfunctions.add (7)

8 >>> yy

9 9

10

End of talk

Thank you

